
Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Empirical (so far) Understanding of
Communication Optimizations for GAS

Languages

Costin Iancu

LBNL

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

$10,000 Questions

• Can GAS languages do better than message passing?

• Claim : maybe, if programs are optimized
simultaneously both in terms of serial and parallel
performance.

• If not, is there any advantage?

• Claim - flexibility in choosing the best implementation
strategy.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Motivation

• Parallel programming - cycle tune parallel,
tune serial

• Serial and parallel optimizations - disjoint
spaces

• Previous experience with GAS languages
showed performance comparable with hand
tuned MPI codes.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Optimizations/Previous Work

• Traditionally parallel programming done in terms of
two-sided communication.

• Previous work on parallelizing compilers and comm.
optimizations reasoned mostly in the terms of two
sided communication.

• Focus on domain decomposition, lowering
synchronization costs or finding the best schedule.

• GAS languages are based on one-sided
communication. Domain decomposition done by
programmer, optimizations done by compiler.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Optimization Spaces

• Serial optimizations -> interested mostly in loop
optimizations:

- Unrolling

- Software pipelining CACHE

- Tiling

• Parallel optimizations:
- Communication scheduling (comm-comm ovlp,

comm/comp ovlp)

- Message vectorization

- Message coalescing and aggregation

- Inspector-executor NETWORK

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Parameters

• Architectural:

- Processor -> Cache

- Network -> L,o,g,G, contention (LogPC)

• Software interface: blocking/non blocking primitives,
explicit/implicit synchronization, scatter/gather….

• Application characteristics: memory and network
footprint

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Modern Systems

• Large memory-processor distance: 2-10/20 cycles
cache miss latency

• High bandwidth networks : 200MB/s-500M/s =>
cheaper to bring a byte over the network than a
cache miss

• Natural question: by combining serial and parallel
optimization can one trade cache misses with
network bandwidth and/or overhead?

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Goals

Given an UPC program and the optimization space
parameters, choose the combination of

parameters that minimizes the total running time.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

(What am I really talking about)
LOOPS

• g(i), h(i) - indirect access -> unlikely to vectorize

fi Either fine grained communication or inspector-
executor

• g(I) - direct access - can be vectorized
get_bulk(local_src, src);

for(…)

 local_dest[g[i]] = local_src[g[i]];

put_bulk(put_bulk(destdest, local_, local_destdest))

for (i=0; i < N;i++)

 dest[g(i)] = f(src[h(i)]);

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Fine Grained Loops

• Fine grained loops - unrolling, software pipelining and
communication scheduling

for(…) {
 init 1; sync 1; compute 1; write back 1;
 init 2; sync 2; compute 2; write back 2;
……..

}

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Fine Grained Loops

for (…) {
 init 1;
 init2;
 sync 1;
 compute 1;
….
}

for (…) {
 init 1;
 init 2;
 init 3;
….
 sync_all;
 compute all;
}

for(…) {
 init 1; sync1;
 compute1;
 write1;
 init 2;sync 2;
 compute 2;
 write 2;
…….
}

(base)

• Problem to solve - find the best schedule of operations
 and unrolling depth such as to minimize the total running
time

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Coarse Grained Loops

get B1;
…
for (…) {
 sync Bi;
 get Bj+1;
 compute Bi;
 sync Bi+1;
 compute Bi+1;
…..
}

(ovlp)

for(…) {
 get B1;
 get B2;
…
 sync B1;
 compute B1;
 sync B2;
 compute B2;
…..
}

(reg)

get_bulk(local_src, src);
for(…) {
 local_dest[g[i]] =
local_src[g[i]];
}
put_bulk(dest, local_dest);

(base)

• Coarse grained loops - unrolling, software pipelining
and communication scheduling + “blocking/tiling”

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Coarse Grained Loops

• Coarse grained loops could be “tiled”. Add the
tile size as a parameter to the optimization
problem.

• Problem to solve - find the best schedule of
operations, unrolling depth and “tile” size such
as to minimize the total running time

• Questions:
- Is the tile constant?
- Is the tile size a function of cache size and/or

network parameters?

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

How to Evaluate?

• Synthetic benchmarks - fine grained messages
and large messages

• Distribution of the access stream varies: uniform,
clustered and hotspot => UPC datatypes

• Variable computation per message size - k*N, N,
K*N, N2 .

• Variable memory access pattern - strided and
linear.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Evaluation Methodology

• Alpha/Quadrics cluster

• X86/Myrinet cluster

• All programs compiled with highest optimization
level and aggressive inlining.

• 10 runs, report average

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Fine Grained Communication

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Fine Grained Communication

for (…) {
 init 1;
 init2;
 sync 1;
 compute 1;
….
}

for (…) {
 init 1;
 init 2;
 init 3;
….
 sync_all;
 compute all;
}

for(…) {
 init 1; sync1;
 compute1;
 write1;
 init 2;sync 2;
 compute 2;
 write 2;
…….
}

(base)

• Interested in the benefits of communication
communication overlap

Read Pipelining (uniform distribution)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Percentage of remote accesses

T
im

e
 (

se
c)

base

2

4

8

16

32

64

u2

Write Pipelining (uniform distribution)

0

5

10

15

20

25

30

35

0 10 20 30 40 50 60 70 80 90 100

Percentage of remote accesses

T
im

e
 (

se
c)

base

2

4

8

16

32

64

X86/Myrinet (os > g)

• comm/comm overlap is
 beneficial

• loop unrolling helps,
best factor 32 < U < 64

Write Pipelining (clustered distribution)

24.2

24.4

24.6

24.8

25

25.2

25.4

25.6

0 10 20 30 40 50 60 70

Cluster length

T
im

e
 (

se
c)

2

4

8

16

32

64

Read pipelining (clustered)

24

24.5

25

25.5

26

26.5

0 10 20 30 40 50 60 70

Cluster length

T
im

e
 (

s
e
c
)

2

4

8

16

32

64

X86/Myrinet (os > g)

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Read Pipelining vs.Write Pipelining (hotspot)

32

33

34

35

36

37

38

39

40

2 4 8 16 32 64

Unroll length

T
im

e
 (

se
c)

read-pipe

write-pipe

Myrinet

 Myrinet: communication/communication overlap works, use non-
blocking primitives for fine grained messages. There’s a limit on the
number of outstanding messages (32 < L <64).

Read Pipelining (uniform distribution)

0

1

2

3

4

5

6

7

8

0 10 20 30 40 50 60 70 80 90 100

Percentage of remote accesses

Ti
m

e
(s

ec
)

base
u2
u4
u8
u16
u32
u64

Write Pipelining (uniform distribution)

0

1

2

3

4

5

6

7

8

9

0 10 20 30 40 50 60 70 80 90 100

Percentage of remote accesses

T
im

e
(s

ec
)

base

u2

u4

u8

u16

u32

u64

Alpha/Quadrics (g > os)

Write Pipelining (clustered sequence)

7.35

7.4

7.45

7.5

7.55

7.6

7.65

7.7

7.75

7.8

0 10 20 30 40 50 60 70

Cluster length

T
im

e
 (

s
e
c)

2

4

8

16

32

64

Read Pipelining (clustered sequence)

6

6.2

6.4

6.6

6.8

7

0 10 20 30 40 50 60 70

Cluster length

T
im

e
 (

se
c)

2

4

8

16

32

64

Alpha/Quadrics

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Read vs. Write Pipelining (hotspot)

0

1

2

3

4

5

6

7

2 4 8 16 32 64

Number of pipelined operations

T
im

e
 (

se
c)

read-pipe

write-pipe

Alpha/Quadrics

On Quadrics, for fine grained messages where there the amount
of computation available for overlap is small - use blocking

primitives.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Coarse Grained Communication

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Benchmark

• Fixed amount of computation

• Vary the message sizes.

• Vary the loop unrolling depth.

get B1;
…
for (…) {
 sync Bi;
 get Bj+1;
 compute Bi;
 sync Bi+1;
 compute Bi+1;
…..
}

(ovlp)

for(…) {
 get B1;
 get B2;
…
 sync B1;
 compute B1;
 sync B2;
 compute B2;
…..
}

(reg)

get_bulk(local_src, src);
for(…) {
 local_dest[g[i]] =
local_src[g[i]];
}
put_bulk(dest, local_dest);

(base)

Uniform Distribution - linear computation - 1.0

1.5

1.7

1.9

2.1

2.3

2.5

2.7

2.9

3.1

3.3

3.5

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Message Size (2xBytes)

T
im

e
 (

se
c)

base

ovlp-2

ovlp-4

ovlp-8

ovlp-16

ovlp-32

ovlp-64

reg-2

reg-4

reg-8

reg-16

reg-32

reg-64

Alpha/Quadrics
Software pipelining with staggered gets is slower.

Cluster 2 - linear computation - 1.0

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

4.5

4.7

11 12 13 14 15 16 17 18 19 20 21 22 23 24

Message Size (2x Bytes)

T
im

e
 (

se
c)

base

ovlp-2

ovlp-4

ovlp-8

ovlp-16

ovlp32

ovlp-64

reg-2

reg-4

reg-8

reg-16

reg-32

reg-64

Cluster 16 - linear computation - 1.0

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

4.5

11 12 13 14 15 16 17 18 19 20 21 22 23 24

Message Size (2x Bytes)

T
im

e
 (

se
c)

base

ovlp-2

ovlp-4

ovlp-8

ovlp-16

ovlp32

ovlp-64

reg-2

reg-4

reg-8

reg-16

reg-32

reg-64

Alpha/Quadrics

• Both optimizations help.

• Again knee around
 tile x unroll = cache_size

• The optimal value for
the blocking case - is it a
function of contention or
some other factor (packet
size,TLB size)

Hotspot - linear computation - 1.0

2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

4.2

4.4

4.6

4.8

5

11 12 13 14 15 16 17 18 19 20 21 22 23 24

Message Size (2x Bytes)

T
im

e
 (

se
c)

base

ovlp-2

ovlp-4

ovlp-8

ovlp-16

ovlp-32

ovlp-64

reg-2

reg-4

reg-8

reg-16

reg-32

reg-64

Alpha/Quadrics

Staggered better than back-to-back - result of contention.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Conclusion

• Unified optimization model - serial+parallel likely to
improve performance over separate optimization stages

• Fine grained messages:
 os > g -> comm/comm overlap helps
 g > os -> comm/comm overlap might not be worth

• Coarse grained messages:
- Blocking improves the total running time by offering

better opportunities for comm/comp overlap and
reducing pressure

- “Software pipelining” + loop unrolling usually better
than unrolling alone

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Future Work

• Worth further investigation - trade bandwidth for
cache performance (region based allocators,
inspector executor, scatter/gather)

• Message aggregation/coalescing ?

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Other Questions

• Fact :Cache miss time same order of magnitude as G.

Question - can somehow trade cache misses for
bandwidth? (scatter/gather, inspector/executor)

• Fact: program analysis often over conservative.

Question: given some computation communication
overlap how much bandwidth can I waste without
noticing in the total running time. (prefetch and region
based allocators)

.

Unified Parallel C at LBNL/UCBUnified Parallel C at LBNL/UCB

Effect of contention (cluster length)

2.5

2.7

2.9

3.1

3.3

3.5

3.7

3.9

4.1

4.3

4.5

4.7

4.9

11 12 13 14 15 16 17 18 19 20 21 22 23 24

Message Size (2x Bytes

T
im

e
 (

se
c)

base-2

base-4

base-8

base-16

ovlp-2

ovlp4

ovlp8

ovlp16

reg-2

reg-4

reg-8

reg-16

